某天(今天)下午闲的没事干,想起了当初学了一堆的深度学习的数学概念,还看了Keras的官方文档,既然会写(抄)代码和懂了理念,不如自己折腾点东西玩玩。
说干就干.png,本来是想做个OCR系统在写个GUI界面弄个小软件的,因为种种原因放弃(不喜欢那个数据集),猫狗大战的话数据量太大。挑来挑去选择了迁移学习,使用VGG16的结构去识别MNIST手写文字,怎么感觉有一个好的开始却选择了一个low的实现呢?其实也无所谓,重点是实现过程,有了这次过程实现以后的迁移学习就不是问题了。
某天(今天)下午闲的没事干,想起了当初学了一堆的深度学习的数学概念,还看了Keras的官方文档,既然会写(抄)代码和懂了理念,不如自己折腾点东西玩玩。
说干就干.png,本来是想做个OCR系统在写个GUI界面弄个小软件的,因为种种原因放弃(不喜欢那个数据集),猫狗大战的话数据量太大。挑来挑去选择了迁移学习,使用VGG16的结构去识别MNIST手写文字,怎么感觉有一个好的开始却选择了一个low的实现呢?其实也无所谓,重点是实现过程,有了这次过程实现以后的迁移学习就不是问题了。
本文收录内容:
重点是对于这些概念的理解,如果想观看具体概念的实现请往他处。
其实是想把这个的标签设成python的,后来想想设置成keras,后来是改成了deeplearning。如果想看算法或代码请往他处,这里只是记录学习中的收获,或者更多的是理解。就像AI的发展,每次遇到坑都会出现新的解决方案和算法,所以重点不是那些算法,而是如何面对问题,解决问题,什么样的新思路。
本文内容如下:有关读完keras和tensorflow官方文档的收获。
让python更酷更实用一些~
记录一些黑魔法,比如正则表达式,或者各种库的应用,虽然感觉日后可能并无卵用。
暂时收录:
停止更新,并无卵用。(日后这里会记录numpy和pandas,等我用熟了再说)
写 LaTeX 的时候排版表格是不是有想杀人的冲动?Ctex 发行版问题太多?数学符号不会写?参考文献管理太复杂?这里给出常用的实惠小工具,愉快的书写LaTeX 代码。